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A B S T R A C T

Mycobacteria are intracellular pathogens that can invade and survive within host macrophages. Mycobacterial
infections remain a major cause of mortality and morbidity worldwide, with serious concerns of emergence of
multi and extensively drug-resistant tuberculosis. While significant advances have been made in identifying
mycobacterial virulence determinants, the detailed molecular mechanism of internalization of mycobacteria into
host cells remains poorly understood. Although several studies have highlighted the crucial role of sphingolipids
in mycobacterial growth, persistence and establishment of infection, the role of sphingolipids in the entry of
mycobacteria into host cells is not known. In this work, we explored the role of host membrane sphingolipids in
the entry of Mycobacterium smegmatis into J774A.1 macrophages. Our results show that metabolic depletion of
sphingolipids in host macrophages results in a significant reduction in the entry ofM. smegmatis. Importantly, the
entry of Escherichia coli into host macrophages under similar conditions remained invariant, implying the spe-
cificity of the requirement of sphingolipids in mycobacterial entry. To the best of our knowledge, our results
constitute the first report demonstrating the role of host macrophage sphingolipids in the entry of mycobacteria.
Our results could help in the development of novel therapeutic strategies targeting sphingolipid-mediated entry
of mycobacteria into host cells.

1. Introduction

Membrane lipids play a crucial role in membrane organization,
dynamics, trafficking and cellular signaling. Intracellular pathogens
have evolved diverse mechanisms to exploit host cell lipids for their
survival (Toledo and Benach, 2015; van der Meer-Janssen et al., 2010;
Vromman and Subtil, 2014). In particular, Mycobacterium tuberculosis,
the causative organism of tuberculosis (TB) in humans, utilizes a large
part of its coding capacity to produce enzymes for lipogenesis and li-
polysis. It exploits host lipids as an energy source for growth and sur-
vival inside the host cells (Lovewell et al., 2016; Toledo and Benach,
2015; Vromman and Subtil, 2014; Wipperman et al., 2014). TB remains
a major cause of mortality and morbidity worldwide with an estimated
10.4 million new cases and 1.4 million deaths reported in 2015 alone
(World Health Organization, 2016). This is further worsened by op-
portunistic TB infection among HIV positive patients (Pawlowski et al.,
2012; World Health Organization, 2016). In addition, the emergence of
multi and extensively drug-resistant TB is a serious concern and has

necessitated research into novel therapeutic strategies to combat this
disease (Dye, 2009; Gandhi et al., 2006; Keshavjee and Farmer, 2012).

Mycobacteria infect their hosts via inhalation and after entering the
lungs, the bacilli are internalized primarily by alveolar macrophages
(Russell, 2007). Work from several laboratories has shown that cellular
plasma membranes serve as entry portals for intracellular pathogens
(Cossart and Roy, 2010; Kumar et al., 2016a; Rosenberger et al., 2000;
Shin and Abraham, 2001; Toledo and Benach, 2015; van der Goot and
Harder, 2001; van der Meer-Janssen et al., 2010; Vromman and Subtil,
2014). In order to achieve entry into host cells, intracellular pathogens
such as mycobacteria interact with the host cell plasma membrane as a
prerequisite to gain access to the cellular interior (Kumar et al., 2016a).
However, the detailed molecular mechanism for the entry of myco-
bacteria into host cells is not clear. A number of candidate receptors
have been identified on the cell surface of host macrophages that are
important for mycobacterial recognition and entry (Ernst, 1998; Killick
et al., 2013). Macrophage receptors such as mannose receptor, sca-
venger receptors, CD-14, dectin-1, DC-SIGN, and complement receptors
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have been found to be important forMycobacterium to gain access to the
interior of host cells (Ernst, 1998; Tailleux et al., 2003; Yadav and
Schorey, 2006). The wide variety of receptors responsible for myco-
bacterial entry into host macrophages highlights the redundancy in the
entry process, and therefore no panacea targeting this critical step has
been developed for the treatment of TB.

Membrane lipids such as cholesterol and sphingolipids play an im-
portant role in host-pathogen interaction (Chattopadhyay and
Jafurulla, 2012; Dumas and Haanappel, 2017; Goluszko and Nowicki,
2005; Hanada, 2005; Kumar et al., 2016a; Lovewell et al., 2016;
Pucadyil and Chattopadhyay, 2007; Riethmüller et al., 2006; Simons
and Ehehalt, 2002; Toledo and Benach, 2015; van der Meer-Janssen
et al., 2010; Vromman and Subtil, 2014; Wipperman et al., 2014).
Cholesterol and sphingolipids are essential components of eukaryotic
cell membranes (Bartke and Hannun, 2009; Holthuis et al., 2001;
Kumar and Chattopadhyay, 2016; Mouritsen and Zuckermann, 2004;
Simons and Ikonen, 2000) and are together known to exhibit non-
random distribution into domains in biological and model membranes
(Brown, 1998; Chaudhuri and Chattopadhyay, 2011; Lingwood and
Simons, 2010; Masserini and Ravasi, 2001; Mukherjee and Maxfield,
2004; Ramstedt and Slotte, 2006; Xu and London, 2000). Mycobacteria
are known to utilize host cholesterol and sphingolipids as nutrient
source for their growth and survival (Lovewell et al., 2016; Speer et al.,
2015; Toledo and Benach, 2015; Vromman and Subtil, 2014;
Wipperman et al., 2014). Although the role of host membrane choles-
terol in the entry of Mycobacterium has previously been addressed
(Gatfield and Pieters, 2000; Viswanathan et al., 2015), the role of host
membrane sphingolipids in mycobacterial entry has not been explored.

Sphingolipids are essential components of eukaryotic cell mem-
branes and constitute ∼10–20% of membrane lipids (Holthuis et al.,
2001). They are relatively abundant in plasma membranes compared to
intracellular membranes and are known to mediate several cellular
processes such as cellular signaling, growth and differentiation (Bartke
and Hannun, 2009; Holthuis et al., 2001). In addition, sphingolipids
have been shown to modulate the function and organization of im-
portant classes of membrane proteins such as G protein-coupled re-
ceptors (GPCRs) (Jafurulla and Chattopadhyay, 2013, 2015), which are
major drug targets (Chattopadhyay, 2014). Importantly, sphingolipids
have been identified as key players in various infectious diseases
(Hanada, 2005; Heung et al., 2006). It is interesting to note that my-
cobacteria have been reported to utilize sphingomyelin, a predominant
sphingolipid in mammals, as a nutrient source and sphingomyelin has
been shown to promote mycobacterial growth in vitro (Speer et al.,
2015). Importantly, the ceramide/sphingolipid components generated
during mycobacterial infection have been shown to be crucial in es-
tablishing bacterial persistence (Gutierrez et al., 2009; Speer et al.,
2015), which has been suggested to contribute to their observed drug
resistance (Sharma and Prakash, 2017).

Although sphingolipids have been identified as key players in my-
cobacterial growth, survival and establishing infection, their possible
role in the entry of mycobacteria into host cells remains unexplored. In
this work, we explored the role of host membrane sphingolipids in the
entry of Mycobacterium smegmatis. M. smegmatis serves as a surrogate
model for mycobacterial internalization since it is believed that the
entry mechanisms are conserved in pathogenic and non-pathogenic
mycobacteria (Zhang, 2013). Our results show that metabolic depletion
of sphingolipids in host macrophages results in a significant reduction
in the entry of M. smegmatis. To the best of our knowledge, our results
constitute the first report demonstrating the role of host macrophage
sphingolipids in the entry of mycobacteria.

2. Materials and methods

2.1. Materials

Penicillin, streptomycin, gentamicin sulfate, fumonisin B1,

sphingomyelinase (EC 3.1.4.12 from Bacillus cereus), 3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), Triton X-
100, DMSO, NaCl and Tween 80 were obtained from Sigma Chemical
Co. (St. Louis, MO). Middlebrook 7H9 broth and 7H10 agar were ob-
tained from Becton, Dickinson Difco (Sparks, MD). Amplex Red sphin-
gomyelinase assay kit was from Molecular Probes/Invitrogen (Eugene,
OR). Bicinchoninic acid (BCA) assay reagent was obtained from Pierce
(Rockford, IL). RPMI-1640 medium and fetal bovine serum were ob-
tained from Gibco/Life Technologies (Grand Island, NY). All other
chemicals used were of the highest available purity. Water was purified
through a Millipore (Bedford, MA) Milli-Q system and used throughout.

2.2. Methods

2.2.1. Cell culture
J774A.1 murine macrophages (American Type Culture Collection)

were cultured as described previously (Kumar et al., 2016b) with some
modifications. In short, cells were maintained in RPMI-1640 medium
supplemented with 2.4 g/l sodium bicarbonate, 10% fetal bovine
serum, 60 μg/ml penicillin, 50 μg/ml streptomycin and 30 μg/ml gen-
tamicin sulfate in a humidified atmosphere at 37 °C with 5% CO2.

2.2.2. Bacterial culture
Mycobacterium smegmatis mc26 was cultured as described previously

(Viswanathan et al., 2015). In brief, M. smegmatis was grown at 37 °C
under shaking conditions in Middlebrook 7H9 broth and 7H10 agar
supplemented with albumin dextrose complex (5 g/l BSA, 2 g/l glucose
and 0.85 g/l NaCl), 0.5% (v/v) glycerol and 0.05% (v/v) Tween 80. E.
coli DH5α was cultured in Luria Bertani broth at 37 °C under similar
conditions.

2.2.3. Depletion of cellular sphingolipids and quantitation of sphingomyelin
Sphingolipid depletion in J774A.1 cells was carried out using fu-

monisin B1 as described earlier (Paila et al., 2010). For this, J774A.1
cells were seeded in 6 well plates at a density of ∼2×105/well and
incubated for 24 h prior to treatment. A stock solution (10mM) of FB1

was prepared in DMSO and macrophages were treated with final con-
centrations of 0.5 and 1 μM FB1 in RPMI-1640 medium with 5% serum
for 60 h at 37 °C. After treatment, cells were washed with PBS and used
for further experiments. Total cellular sphingomyelin was estimated
from cell lysates using the Amplex Red sphingomyelinase assay kit.
Sphingomyelin content was normalized to total cellular protein quan-
tified using the bicinchoninic acid assay (Smith et al., 1985).

2.2.4. MTT viability assay
Macrophage viability upon treatment with FB1 was assessed using

MTT assay as described previously (Viswanathan et al., 2015). Briefly,
macrophages were plated at an initial density of ∼2×104 in 24 well
plates and treated with FB1 as described in Section 2.2.3. Cells were
then washed and incubated with MTT dissolved in serum-free RPMI-
1640 medium at a final concentration of 0.4mg/ml at 37 °C for 1 h. The
color obtained upon dissolving formazan crystals, formed on reduction
of MTT salt by mitochondrial enzymes in live cells (Vistica et al., 1991)
in DMSO, was measured by absorbance at 540 nm in a PowerWave XS2
microplate spectrophotometer (BioTek, Winooski, VT).

2.2.5. Quantitation of bacterial entry into macrophages
Entry of M. smegmatis and E. coli DH5α into J774A.1 macrophages

was quantitated by scoring colony forming units (CFU), as described
previously (Viswanathan et al., 2015). Exponentially growing M.
smegmatis and E. coli strains at a multiplicity of infection (MOI) of 100:1
(bacteria to macrophage) were used to perform infections. Prior to in-
fection, single cell suspension of M. smegmatis was obtained by passing
the culture through a 26 1/2 gauge needle 5–6 times. Macrophages
were incubated with bacteria for 2 h and washed with PBS. These
macrophages were then treated with gentamycin (50 μg/ml) in serum-
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free RPMI-1640 medium for 30min at 37 °C to kill extracellular bac-
teria, followed by 3 washes with antibiotic free media. The efficacy of
gentamycin treatment was verified by plating the wash fractions on
Middlebrook 7H10 agar to enumerate CFU counts. No colonies ap-
peared on these plates, indicating that all extracellular bacteria had
indeed been killed by this treatment. Macrophages were lysed using
0.1% (v/v) Triton X-100 and appropriate dilutions ofM. smegmatis were
made in Middlebrook 7H9 media and were plated on Middlebrook
7H10 agar. In case of E. coli, appropriate dilutions were made in Luria
Bertani broth and were plated on Luria Bertani agar. Plates were in-
cubated at 37 °C till visible colonies appeared for counting CFUs.

2.2.6. Fluorescence confocal microscopy of the entry of M. smegmatis into
macrophages

J774A.1 macrophages were seeded on glass cover slips at a density
of ∼2×104. Upon treatment with FB1, macrophages were infected
with M. smegmatis stably expressing the fluorescent protein dsRed2
(strain transformed with pMSP12:dsRed2 (Cosma et al., 2004)) as de-
scribed in Section 2.2.5. Cells were subsequently washed with PBS,
fixed with 4% (v/v) formaldehyde and mounted in media containing
DAPI. Images were acquired on a Leica SP8 confocal microscope
(Wetzlar, Germany) with a 63× /1.4 NA oil immersion objective.
Maximum intensity projections were generated upon merging confocal
z-sections of infected macrophages.

2.2.7. Statistical analysis
Significance levels were estimated using the Student’s two-tailed

paired t-test using Graphpad Prism software version 4.0 (San Diego,
CA). Plots were generated using OriginPro software, version 8.0
(OriginLab, Northampton, MA).

3. Results

3.1. Treatment of macrophages with fumonisin B1 leads to a reduction in
total cellular sphingomyelin

Sphingolipid biosynthesis is initiated by condensation of serine with
palmitoyl CoA to form 3-ketosphinganine (see Fig. 1a). This is further
converted to sphinganine, the basic building block of sphingolipids.
Sphinganine (or sphingosine) is acylated by ceramide synthase (N-
acetyltransferase) to form dihydroceramide (or ceramide). Ceramide is
converted to sphingomyelin or glycosphingolipids. Sphingolipids ex-
hibit enormous diversity with different headgroups and fatty acids at-
tached to sphingoid base and ceramide (Fantini and Barrantes, 2009;
Slotte, 2013). Cellular sphingolipid levels can be conveniently modu-
lated using fumonisin B1 (FB1), and this approach has been extensively
used to decipher the role of sphingolipids in various cellular processes
(Jafurulla and Chattopadhyay, 2015; Merrill et al., 1996; Paila et al.,
2010; Soriano et al., 2005). FB1 is a mycotoxin produced by Fusarium
species and is a potent inhibitor of sphingolipid biosynthesis. Owing to
its structural similarity with sphingoid bases (sphingosine and sphin-
ganine), FB1 competitively inhibits ceramide synthase, the enzyme re-
sponsible for acylation of sphingoid bases during the biosynthesis of
sphingolipids (see Fig. 1a).

In order to study the role of sphingolipids in the entry of myco-
bacteria into host cells, we metabolically depleted sphingolipids from
J774A.1 macrophages using FB1. Upon treatment of macrophages with
FB1, we estimated the levels of sphingomyelin, which constitutes a
major fraction (∼80%) of total cellular sphingolipids (Bartke and
Hannun, 2009; Holthuis et al., 2001) as a representative indicator of
total macrophage sphingolipids. As shown in Fig. 1b, treatment with
FB1 resulted in a concentration-dependent reduction in sphingomyelin
content of macrophages. We observed a reduction of ∼23% and ∼52%
sphingomyelin in macrophages upon treatment with 0.5 and 1 μM FB1,
respectively.

3.2. Treatment of macrophages with FB1 does not compromise macrophage
viability

It has been previously shown that FB1, apart from inhibiting
sphingolipid biosynthesis, could be cytotoxic by inducing oxidative
stress at high concentrations (Cetin and Bullerman, 2005; Kouadio
et al., 2005; Sjögren and Svenningsson, 2007; Yu et al., 2001). We
therefore assessed viability of macrophages upon treatment with FB1

under our experimental conditions, utilizing MTT viability assay. Fig. 2
shows that treatment with 0.5 and 1 μM FB1 does not compromise
macrophage viability.

Fig. 1. Biosynthetic pathway of sphingolipids and inhibition of sphingolipid biosynthesis
in macrophages utilizing fumonisin B1. (a) Sphingolipid biosynthetic pathway high-
lighting specific steps at which fumonisin B1 (FB1) acts. FB1 is a competitive inhibitor of
ceramide synthase (N-acetyltransferase), the enzyme that catalyzes the acylation of
sphinganine in de novo biosynthesis of sphingolipids and reutilization of sphingosine
derived from sphingolipid turnover. Cellular sphingolipids in J774A.1 macrophages were
depleted by treatment with FB1 (as described in Section 2). (b) Sphingomyelin content of
macrophages upon treatment with FB1 was quantitated using Amplex Red assay. Values
are normalized to sphingomyelin levels of untreated (control) cells. Data represent
means ± S.E. of three independent experiments (*** corresponds to significant
(p < 0.001) differences in sphingomyelin content of FB1-treated cells relative to control
cells). The chemical structure of FB1 is shown in the inset. See Section 2 for more details.
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3.3. Depletion of cellular sphingolipids inhibits mycobacterial entry into host
cells

In order to assess the role of cellular sphingolipids in mycobacterial
entry into host cells, macrophages treated with FB1 were infected with
M. smegmatis and bacterial colony forming units were scored. As shown
in Fig. 3, we observed ∼12% decrease in mycobacterial entry upon
treatment with 0.5 μM FB1. Upon treatment with 1 μM FB1, which re-
sulted in reduction of sphingomyelin content by ∼52%, we observed
∼35% reduction in the entry of M. smegmatis.

3.4. Fluorescence imaging reinforces the requirement of host sphingolipids
for the entry of M. smegmatis

In order to validate the bacterial entry phenotype observed upon
metabolic depletion of host cell sphingolipids, we carried out confocal
microscopy of macrophages infected with M. smegmatis (stably ex-
pressing dsRed2) under these conditions. Representative confocal
images of macrophages treated with 0.5 and 1 μM FB1 and infected with
M. smegmatis are shown in Fig. 4. The figure clearly shows concentra-
tion-dependent reduction in the entry of Mycobacterium into macro-
phages, in agreement with results shown in Fig. 3. Taken together,
these results reinforce the requirement of host cell sphingolipids for the

entry of M. smegmatis.

3.5. Requirement of host sphingolipids for bacterial entry is specific to
Mycobacterium

In order to assess the specificity of cellular sphingolipids in myco-
bacterial entry into host cells, as a control, we monitored the effect of
metabolic sphingolipid depletion on the entry of E. coli into host mac-
rophages. As shown in Fig. 5, the entry of E. coli into host macrophages
displayed no inhibition (remained invariant) with FB1 treatment, in
contrast to M. smegmatis, whose entry into macrophages showed sig-
nificant reduction under similar conditions (see Fig. 3). These results
indicate that while the entry ofM. smegmatis is dependent on membrane
sphingolipids, the entry of E. coli is not. Our results therefore highlight
the specificity of sphingolipid requirement for effective entry of M.
smegmatis into host cells.

4. Discussion

Sphingolipids are ubiquitous constituents of eukaryotic cell mem-
branes and are recognized as diverse and dynamic regulators of a
multitude of cellular processes (Bartke and Hannun, 2009; Holthuis
et al., 2001). Besides their physiological functions, sphingolipids are
implicated in several pathobiological conditions ranging from cardio-
vascular, neurodegenerative and metabolic disorders to cancer (Kolter
and Sandhoff, 2006; Sonnino and Chigorno, 2000; Truman et al., 2014).
Importantly, sphingolipids have been identified as key players in var-
ious infectious diseases (Hanada, 2005; Heung et al., 2006). Several
pathogens modulate host sphingolipids and their metabolites to ma-
nipulate host defense, thereby enabling their survival. In addition, host
cell membrane sphingolipids have been exploited as membrane re-
ceptors by various pathogens (Hanada, 2005; Slotte, 2013). Microbes
including bacteria and viruses utilize host sphingolipids to promote
their pathogenicity (Heung et al., 2006). For example, many in-
tracellular pathogens have been shown to use ceramide-rich membrane
domains as portals for their entry into macrophages (Mañes et al.,
2003), with many others targeting host sphingolipids for promoting
their virulence (Heung et al., 2006).

M. tuberculosis is an intracellular pathogen that is known to survive
within host macrophages by residing in phagosomes and preventing its
fusion with lysosomes by employing a variety of mechanisms (Russell,
2007). Sphingolipids have been identified to play a crucial role in
growth, replication and survival of mycobacteria in host macrophages
(Lovewell et al., 2016; Speer et al., 2015; Toledo and Benach, 2015;
Vromman and Subtil, 2014; Wipperman et al., 2014). Importantly,
sphingolipids such as ceramide, sphingosine and sphingomyelin have
been shown to inhibit intracellular growth of M. tuberculosis in mouse
macrophages (Anes et al., 2003) via different mechanisms (Gutierrez
et al., 2009). In addition, reduction in sphingosine-1-phosphate (S1P)
production by inhibiting the activity and localization of sphingosine
kinase has been identified as a crucial determinant of survival of M.
tuberculosis in host macrophages (Heung et al., 2006; Kusner, 2005;
Sharma and Prakash, 2017).

Although several studies have demonstrated that host sphingolipids
are crucial players in the pathogenicity of mycobacteria, the role of
sphingolipids in the entry of mycobacteria into host macrophages has
not been explored. Our present results clearly demonstrate that host
macrophage sphingolipids are essential for the entry of mycobacteria.
Importantly, we show that this process is specific to mycobacterial
entry since such dependence was not observed in case of entry of E. coli.
As mentioned above, previous results from our laboratory
(Viswanathan et al., 2015) and others (Gatfield and Pieters, 2000; Han,
2009; Lobato et al., 2014; Martens et al., 2008; Miner et al., 2009;
Parihar et al., 2014) showed the requirement of host macrophage
cholesterol for mycobacterial entry. In addition, we demonstrated the
requirement of optimum host plasma membrane cholesterol for the

Fig. 2. Macrophage viability is not affected by FB1 treatment. J774A.1 macrophages were
treated with FB1 and assayed for viability using MTT. Values are expressed as percentages
of viability of treated cells normalized to control cells. Data represent means ± S.E. of six
independent measurements. See Section 2 for more details.

Fig. 3. Metabolic inhibition of sphingolipid biosynthesis inhibits the entry of M. smeg-
matis into macrophages. Macrophages (control and sphingolipid-depleted) were exposed
to M. smegmatis at a multiplicity of infection of 100:1 (bacteria to macrophage) for 2 h.
After lysing macrophages, intracellular bacilli were cultured and the colony forming units
(CFUs) were counted. Values are normalized to CFU counts obtained from untreated
(control) cells. (* and *** correspond to significant (p < 0.05 and p < 0.001) difference
in CFU counts of sphingolipid-depleted macrophages relative to control macrophages).
See Section 2 for more details.
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entry of mycobacteria into macrophages (Viswanathan et al., 2015).
Taken together, our present results on the requirement of sphingolipids
in the entry of mycobacteria, along with our previous observations on
cholesterol-dependent mycobacterial entry (Viswanathan et al., 2015),
suggest a synergism between these essential functional membrane lipids
in mycobacterial entry.

We recently proposed a possible mechanism by which membrane
lipids could modulate the entry of intracellular pathogens (Kumar et al.,
2016a; Viswanathan et al., 2015). As mentioned above, a number of
candidate receptors on host macrophage cell surface have been im-
plicated in recognition and entry of mycobacteria into host cells (Ernst,
1998; Killick et al., 2013). Importantly, earlier work by us and others
has shown that membrane cholesterol and sphingolipids modulate the
organization and function of several membrane receptors, particularly
GPCRs (Gimpl, 2016; Jafurulla and Chattopadhyay, 2013, 2015; Oates
and Watts, 2011; Paila and Chattopadhyay, 2010; Pucadyil and
Chattopadhyay, 2006). We therefore envisage that the conformation of
membrane receptors implicated in mycobacterial entry into host cells
could possibly be modulated by membrane cholesterol and sphingoli-
pids. It is interesting to note that a recent study has shown that my-
cobacteria suppress the host cell signaling pathways by manipulating

GPCRs (Alaridah et al., 2017).
Several proteins that interact with sphingolipids have been reported

to contain a consensus amino acid sequence, termed the ‘sphingolipid
binding domain’ (SBD). SBD was initially identified and characterized
in HIV-1 surface envelope glycoprotein gp120 and amyloid proteins
(Mahfoud et al., 2002). It was later identified in a wide range of pro-
teins including receptors, toxins and viral proteins (Chattopadhyay
et al., 2012; Fantini, 2003; Fantini and Barrantes, 2009). The SBD motif
typically consists of a characteristic combination of aromatic, basic and
turn-inducing residues. It would be interesting to check whether
membrane receptors responsible for mycobacterial entry contain SBD
motifs in their sequence.

In summary, our present results highlight, for the first time, the
specific requirement of host membrane sphingolipids in mycobacterial
entry. These results, along with previous reports, clearly demonstrate
the requirement of host cell sphingolipids for the entry and survival of
mycobacteria. Modulation of sphingolipids of host cells could therefore
potentially lead to novel therapeutic strategies against mycobacterial
infection. This approach could have a major advantage to counter the
emerging challenge of drug resistance in the treatment of mycobacterial
infection (Dye, 2009; Gandhi et al., 2006; Keshavjee and Farmer, 2012),
since the focus of treatment would be on the host rather than the
parasite.
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